\square	LC78835K, 78835KM
	18 Bits Digital Filter and D/A Converter for Digital Audio

Overview

The LC78835K and 78835 KM are 18 -bit digital-to-analog D/A converter CMOS ICs with an on-chip eight-times oversampling digital filter. The LC78835 and the LC78835M are pin compatible.

Features

- Digital filter
- 8 fs oversampling filter: 3-stage finite-impulseresponse (FIR) filter design (43rd-, 11th-, and thirdorders)
- De-emphasis filter: Supports fs $=32 \mathrm{kHz}, 44.1 \mathrm{kHz}$, or 48 kHz
- Soft mute
- Noise shaper
- Supports double-rate sampling
- D/A converter
- Dynamic level-shifting 18-bit digital-to-analog converter
- On-chip 2-channel D/A converter (with corresponding output)
- On-chip output op-amp
- Supports 384 fs, 392 fs, 448 fs, or 512 fs system clock
- Single 5 V supply
- Permits low-voltage operation (3.5 V)
- Low-power silicon-gate CMOS process

Package Dimensions

unit: mm
3092-DIP24W

unit: mm
3155-MFP24

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{SS}}=0^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{DD} max		-0.3 to +7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating temperature	Topr		-30 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	V_{DD}		3.5	5.0	5.5	V
Reference voltage high	Vref H		$\mathrm{V}_{\mathrm{DD}}-0.3$		V_{DD}	V
Reference voltage low	Vref L		0		0.3	V
Operating temperature	Topr		-30		+75	${ }^{\circ} \mathrm{C}$

DC Characteristics at $\mathbf{T a}=-\mathbf{3 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{3 . 5}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high level voltage (1)	$\mathrm{V}_{\mathrm{HH}} 1$	$3,4,5,6,7,13,14,15,16,17$ and 18 pin	2.2			V
Input low level voltage (1)	$\mathrm{V}_{\text {IL }} 1$	$3,4,5,6,7,13,14,15,16,17$ and 18 pin			0.8	V
Input high level voltage (2)	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	11 pin	$0.7 \mathrm{~V}_{\text {DD }}$			V
Input low level voltage (2)	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	11 pin			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Output high level voltage	V_{OH}	$9 \mathrm{pin}: \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4			V
Output low level voltage	V_{OL}	$9 \mathrm{pin}: \mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V
Input leakage current	IL	*, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$	-25		+25	$\mu \mathrm{A}$

Note: $* 3,4,5,6,7,11,13,14,15,16,17$ and 18 pin
AC Characteristics at $\mathrm{Ta}=-30$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Oscillation frequency	f_{X}	XIN pin for crystal oscillator	1.0		25	MHz
Clock pulse width	${ }_{\text {t }}$ W	With external clock input to other than XIN pin	18			ns
Clock pulse phase	${ }^{\text {t }} \mathrm{CY}$	With external clock input to other than XIN pin	40		1000	ns
BCLK pulse width	$\mathrm{t}_{\mathrm{BCW}}$		60			ns
BCLK pulse phase	$\mathrm{t}_{\mathrm{BCY}}$		120			ns
Data setup time	t_{DS}		40			ns
Data hold time	t_{DH}		40			ns
LRCK setup time	thRS		40			ns
LRCK hold time	$\mathrm{t}_{\text {LRH }}$		40			ns

Audio Input Waveforms

Electrical Characteristics (1)

at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}=\mathrm{V}_{\text {refH }}=5.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{VrefL}^{2}=\mathbf{0} \mathrm{V}$, unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
D/A converter resolution	RES			18		Bits
Total harmonic distortion	THD	At $1 \mathrm{kHz}, 0 \mathrm{~dB}{ }^{* 1}$			0.08	\%
Dynamic range	DR	At $1 \mathrm{kHz},-60 \mathrm{~dB}$	90			dB
Crosstalk	CT	At $1 \mathrm{kHz}, 0 \mathrm{~dB}$			-85	dB
Signal-to-noise ratio	S/N	JIS-A	96			dB
Full-scale output voltage	VFS			3.0		$\mathrm{V}_{\text {P-P }}$
Power dissipation	Pd	*2		135	200	mW
Output load resistance	RL	21, 23 pin	5			k Ω

Note: 1. " 0 dB " signifies full scale.
2. XIN pulse width (pin 11) 1.5 to $3.5 \mathrm{~V}, \mathrm{fx}=16.9344 \mathrm{MHz}$

Test circuit: Based on application circuit

Electrical Characteristics (2)
at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{VrefH} 3.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{VrefH}=0 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
D/A converter resolution	RES			18		Bits
Total harmonic distortion	THD	At $1 \mathrm{kHz}, 0 \mathrm{~dB}$ *			0.09	\%
Dynamic range	DR	At $1 \mathrm{kHz},-60 \mathrm{~dB}$	90			dB
Crosstalk	CT	At $1 \mathrm{kHz}, 0 \mathrm{~dB}$			-85	dB
Signal-to-noise ratio	S/N	JIS-A	96			dB
Full-scale output voltage	VFS			2.1		$\mathrm{V}_{\text {P-P }}$
Power dissipation	Pd	*2		50	75	mW
Output load resistance	RL	21, 23 pin	15			$\mathrm{k} \Omega$

Note: 1. " 0 dB " signifies full scale.
2. XIN pulse width (pin 11) 1.0 to $2.5 \mathrm{~V}, \mathrm{fx}=16.9344 \mathrm{MHz}$

Test circuit: Based on application circuit

Block Diagram

Pin Assignment

Top view

Pin Description

Description of Operation

1. Digital Filter

The LC78835K and 78835KM perform arithmetic functions as shown in the following block diagrams.

- Oversampling

Constructed of twice as many interpolation filters with a cascade connection arrangement using finite-impulseresponse (FIR) filters. When operating in normal-rate mode, data is transferred through a three-stage cascading process consisting of 43rd-order, 11th-order, and third-order finite impulse response (FIR) filters connected together to produce an eight-times oversampled signal. When operating in double-rate mode, data is transferred through a two-stage cascading process consisting of 43rd-order and second-order finite-impulse-response (FIR) connected filters to give a four-times oversampled signal. For further details concerning filter characteristics, refer to page 12 .

- De-emphasis

Digital de-emphasis is performed using a first-order infinite-impulse-response (IIR) filter. Filter supported sampling frequencies include fs $=32 \mathrm{kHz}, 44.1 \mathrm{kHz}$ and 48 kHz (frequencies are all doubled with double-rate mode).

For further details concerning filter characteristics when de-emphasis is on, refer to page 13.

- De-emphasis on/off

De-emphasis on: EMP pin = "H"
De-emphasis off: EMP pin = "L"

- Selection of filter coefficient

FS1	L	H	H	L
FS2	L	L	H	H
fs	44.1 kHz	32 kHz	48 kHz	

- Soft Mute

Soft muting is performed using the built-in digital attenuator. The attenuation amount of the attenuator circuit is as follows:
$20 \log (\mathrm{ATT} / 256) \mathrm{dB}$
Although ATT $=0$ to 256 , when $\mathrm{ATT}=0$, attenuation sets to $-\infty$. If the MUTE pin is set to "H" level, ATT approaches 0 in single-decreasing increments and the attenuation changes towards $-\infty$. On the other hand, when the MUTE pin is set to the "L" level, ATT approaches 256 in single-increasing increments and the attenuation amount changes to approach 0 . The approximate speed during soft mute is $1024 / \mathrm{fs}$.

- Noise Shaper

In order to reduce noise during DF arithmetic output requantization, the first-order noise shaper is utilized.

- Double-Rate Support

When the D / N pin is set to " H " level, CD high-speed playback is supported. At this time, BCLK, LRCK and DATA are input at double the frequency of normal operating times. The system clock operates at 384 fs and with a clock speed of 512 fs , double-rate is supported. Note that test mode is enabled for clock speeds of 392 fs and 448fs and double-rate is not supported.

Normal-rate mode: D/N pin = "L"
Double-rate mode: D/N pin = "H"
2. Initialization

Initialization is necessary when power is applied or the system clock is replaced. When the INITB pin has been set to an "L" level, the supply to XIN, BCLK, and LRCK should be connected only after the supply has stabilized at the "L" level. As shown in the figure, a period greater than one LRCK cycle is required.

When INITB $=$ "L," all 18-bit digital filter outputs set to 0 , and the D/A converter's output (CH1OUT, CH2OUT) equals 0 analog output (approximately (VREFH + VREFL)/2 electric potential).

3. System Clock

This IC supports four system clock speeds including $384 \mathrm{fs}, 392 \mathrm{fs}, 448 \mathrm{fs}$, and 512 fs . These may be selected using the CKSL1 and CKSL2 pins.

CKSL1	CKSL2	System Clock
L	L	384 fs
L	H	392 fs
H	L	448 fs
H	H	512 fs

- CKOUT Pin

When operating at 392 fs, clock output is 196 fs or half that of the system clock. All other speeds result in clock output equal to that of the system.

4. Digital Audio Data Input

Digital audio data supports MSB first and 2's complement code using a 16-bit serial signal. 16-bit serial data is input from the DATA pin at the edge of BCLK rising and is input to the internal register along with readings at the rising and falling edges of LRCK.

400737
Digital Audio Data Input Timing
5. Digital-to-Analog (D/A) Converter

These chips have built-in output operational amplifiers which use two independent on-chip D/A converters for CH1 and CH2. Both use dynamic level shift, combining resistance strings (R-string D/A conversion), pulse-width modulation (PWM D/A conversion) and level shift D/A conversion modes. (See figure below.)

- Resistance String (R-string) D/A Converter

This 9-bit D/A converter circuit has $512\left(=2^{9}\right)$ unit resistors (R) connected in series so that a potential applied to both ends is subjected to 512-way division. The two adjoining potentials V2 and V1 of the divided potentials corresponding to the values of the 9 MSBs of data (D15 to D9) are sent via a switching circuit to the PWM D/A converter. At this point, $\mathrm{V} 2-\mathrm{V} 1=(\mathrm{VH}-\mathrm{VL}) / 512$.

- Pulse-Width Modulation (PWM) D/A Converter

This is a 3-bit circuit that applies pulse width modulation to voltages V2 and V1 output from the R-string D/A converter to produce an 8 -way division. Depending on the value of the data in bits D8 to D6, one of the voltages, V2 or V1, is output to the CH1OUT (or CH2OUT) pin.

- Level Shift D/A Converter

The variable resistors VRH and VRL are connected in series to the two ends of the R-string D/A converter resistance, configuring a 6-bit D/A conversion circuit. Depending on the values of the data in the LSBs (bits D5 to D0), VRH and VRL change as follows.
(1) The sum of VRH and VRL is constant, irrespective of the data value.
(2) Irrespective of the data value, VRH and VRL are in the range of 0 to $63 \mathrm{R} / 512$ (where R is the unit resistance of the R -string D/A converter) and resistance changes in $\mathrm{R} / 512$ steps in accordance with the data value.

This means that the R-string D/A converter outputs, V 2 and V 1, each vary in the range of 0 to $63 \times \Delta \mathrm{V} / 512(\Delta \mathrm{~V}=$ (VH - VL)/512) in $\Delta \mathrm{V} / 512$ steps.

- Vref H/L, REF H/L Pins

The voltage on the Vref pins, used to apply the reference voltage to the resistance strings, are usually set so that VrefH $=\mathrm{AV}_{\mathrm{DD}}$ and VrefL = AGND. In addition, a $10 \mu \mathrm{~F}$ rated condenser connects REFH and AGND as well as REFL and AGND. When VrefH $=5.0 \mathrm{~V}$, VrefL $=0 \mathrm{~V}$, the LC78835K on-chip RH and RL resistors maximum output amplitude at 0 dB playback is output in the $3.0 \mathrm{Vp}-\mathrm{p}$ range extending from a minimum 0.6 V to maximum 3.6 V .

Filter Characteristics (theoretical values)
Normal-rate mode: 8 fs oversampling
Double-rate mode: 4 fs oversampling
Ripple: within $\pm 0.05 \mathrm{~dB}$
Attenuation amount: -40 dB or less
-Normal Rate (De-emphasis Off)

Sampling Frequency (fs)
-Double Rate (De-emphasis Off)

Pass Band Characteristics with De-emphasis On

- Normal Rate

- Double Rate

Sample Application Circuit

Note: 1. Within the sample application circuit, $\mathrm{DV}_{\mathrm{DD}}$ connects to DGND as the digital ground, and $\mathrm{AV}_{\mathrm{DD}}$ connects to AGND as the analog ground.
2. For $\mathrm{AV}_{\mathrm{DD}}$ and VrefH , a low-impedance high-stability power supply (commercially available 3-pin regulator or compatible) should be used.
3. If 8-pin $\left(\mathrm{DV}_{\mathrm{DD}}\right)$ and 24-pin $\left(\mathrm{AV}_{\mathrm{DD}}\right)$ rise timings deviate, latch-up may occur. For this reason, no difference should exist between 8 and 24 pin power application timing.
4. A clock signal must be supplied to the XIN pin immediately after power is applied. The IC may be destroyed if the XIN pin is held either high or low when power is applied.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1996. Specifications and information herein are subject to change without notice.

